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 35 
Abstract. The implementation of European emission abatement strategies has led to 36 
significant reduction in the emission of ozone precursors during the last decade. Ground 37 
level ozone is also influenced by meteorological factors such as temperature, which 38 
exhibit interannual variability, and are expected to change in the future. The impacts of 39 
climate change on air quality are usually investigated through air quality models that 40 
simulate interactions between emissions, meteorology and chemistry. Within a multi-41 
model assessment, this study aims to better understand how air quality models represent 42 
the relationship between meteorological variables and surface ozone concentrations 43 
over Europe. A multiple linear regression (MLR) approach is applied to observed and 44 
modelled time series across ten European regions in springtime and summertime for the 45 
period of 2000-2010 for both models and observations. Overall, the air quality models 46 
are in better agreement with observations in summertime than in springtime, and 47 
particularly in certain regions, such as France, Mid-Europe or East-Europe, where local 48 
meteorological variables show a strong influence on surface ozone concentrations. 49 
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Larger discrepancies are found for the southern regions, such as the Balkans, the Iberian 50 
Peninsula and the Mediterranean basin, especially in springtime. We show that the air 51 
quality models do not properly reproduce the sensitivity of surface ozone to some of the 52 
main meteorological drivers, such as maximum temperature, relative humidity and 53 
surface solar radiation. Specifically, all air quality models show more limitations to 54 
capture the strength of the relationship ozone-relative humidity detected in the observed 55 
time series in most of the regions, in both seasons.  Here, we speculate that dry 56 
deposition schemes in the air quality models might play an essential role to capture this 57 
relationship. We further quantify the relationship between ozone and maximum 58 
temperature (mo3-T, climate penalty) in observations and air quality models. In 59 
summertime, most of the air quality models are able to reproduce reasonably well the 60 
observed climate penalty in certain regions such as France, Mid-Europe and North Italy. 61 
However, larger discrepancies are found in springtime, where air quality models tend to 62 
overestimate the magnitude of observed climate penalty.  63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
1. Introduction 74 
 75 
Tropospheric ozone is recognised as a threat to human health and ecosystem 76 
productivity (Mills et al. 2007). Moreover, ozone is an important greenhouse gas (IPCC, 77 
2013). It is produced by photochemical oxidation of carbon monoxide and volatile 78 
organic compounds (VOCs) in the presence of nitrogen oxides (NOx=NO+NO2) (Jacob 79 
and Winner, 2009). While it is an important pollutant on a regional scale, due to the 80 
long-range transport effect it may also influence air quality on a hemispheric scale 81 
(Monks et al., 2015, Hedegaard et al, 2013). Moreover, its strong relationship with 82 
temperature represents a major concern, since under a changing climate the efforts on 83 
new air pollution mitigation strategies might be insufficient. This effect, referred as 84 
climate penalty (Wu et al., 2008), is expected to play an important role on future air 85 
quality (Hendriks et al. 2016). Therefore it is essential to better understand the potential 86 
implications of climate change on pollutant levels. In a comprehensive review of the 87 
existing literature about the robustness of climate penalty on Europe, Colette et al. 88 
(2015) concluded that the climate change might act against mitigation measures. 89 
 90 
Previous studies have shown that the reduction of emissions of ozone precursors, NOx 91 
and VOCs, lead to a decrease in tropospheric ozone concentrations in Europe (Solberg 92 
et al. 2005, Jonson et al. 2006). However, there is also a large year-to-year variability 93 
due to weather conditions (Andersson et al. 2007). There is a strong correlation between 94 
ozone and temperature that has been associated with the temperature-dependent lifetime 95 
of peroxyacetyl nitrate (PAN), and also due to the temperature dependence of biogenic 96 
emission of isoprene (Sillman and Samson, 1995). Substantial increases in surface 97 
ozone have been associated with high temperatures and stable anticyclonic, sunny 98 
conditions that promote ozone formation (Solberg et al. 2008). Ozone peak 99 
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concentrations are also affected by closing of the plants’ stomata at very high 100 
temperatures (Hodnebrog et al. 2012). Several studies have assessed the model 101 
dependence of ozone on temperature (e.g. Steiner et al. 2006, Rasmussen et al. 2013). 102 
Recently, Coates et al. (2016) used a box model to investigate the influence of 103 
temperature and NOx on ozone production. Their analysis suggested that reductions in 104 
NOx would be required to offset additional ozone increase due to increasing 105 
temperatures under a warmer climate. An extensive review about the impacts of 106 
temperature on ozone production can be found in Pusede et al. (2015). 107 
 108 
Previous studies have shown the importance of relative humidity on ozone pollution 109 
episodes (Camalier et al. 2007, Davies et al. 2011). Regional studies reported a negative 110 
relationship between ozone and relative humidity (Dueñas et al. 2002, Elminir 2005, 111 
Demuzere et al., 2009). Some authors attributed this negative correlation to the 112 
photolysis of ozone and subsequent loss of O1(D) to H2O (Jacob and Winner). High 113 
levels of humidity are usually related with enhanced cloud cover and thus reduced 114 
photochemistry (Dueñas et al. 2002, Camalier et al. 2007). Andersson and Engardt 115 
(2010) highlighted the importance of including meteorological dependence for dry 116 
deposition of ozone to vegetation, also incorporating soil moisture dependence. With a 117 
simple modelling approach, Kavassalis and Murphy (2017) found that the relationship 118 
ozone-relative humidity was well captured by the inclusion of the vapour pressure 119 
deficit-dependent dry deposition, indicating the relevance of detailed dry deposition 120 
schemes in the CTMs.  121 

Increasing solar radiation leads to an increase of ozone, though with a weak effect 122 
(Dawson et al. 2007) and it has been suggested that it could reflect in part the 123 
association of clear sky with high temperatures (Ordónez et al., 2005). Then, changes in 124 
cloud cover can also affect the photochemistry of ozone production and loss (Jacob and 125 
Winner, 2009).  Additionally, low wind speed is usually associated with high ozone 126 
pollution levels (Jacob and Winner, 2009).  127 

The influence of climate change on ozone and its precursors can involve multiple 128 
processes (Colette et al, 2015). A common approach to study the impact of climate 129 
change on air quality requires the use of air quality models that aim to represent 130 
dynamic and chemical processes in the atmosphere. The relevance of climate change for 131 
future European air quality has been assessed in several studies that also reflect 132 
differences depending on the modelling system and future emissions scenarios adopted 133 
for each study (e.g. Lagner et al. 2005, Meleux et al. 2007, Anderson and Engardt, 134 
2010).  135 
 136 
Air quality models can be divided into two categories: offline chemistry transport 137 
models (CTMs) in which the model chemistry runs using meteorological data as input, 138 
and online models that allow coupling and integration of chemistry with some of the 139 
physical components to various degrees (Baklanov et al. 2014). Differences between 140 
offline and online modelling approaches can be fairly small or significant, depending on 141 
the level of the model complexity and simulated variables (Zhang, 2008). The large 142 
number and complex interactions between meteorology and chemistry in the 143 
atmosphere influence the ability of the model to represent observed situations (Kong et 144 
al. 2014). Due to assumptions, parametrizations and simplifications of processes, the 145 
models themselves are subject to large uncertainties (Manders et al. 2012), which have 146 
been reflected in some regional differences in the magnitude of surface ozone response 147 
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to projected climate change (Andersson and Engardt, 2010). Thus, model biases when 148 
compared to observations still remain a concern, especially in terms of the response of 149 
air quality under future climate (Fiore et al. 2009, Rasmussen et al. 2012). Comparisons 150 
between model outputs and measurements of available observational dataset assess the 151 
reliability of air quality models, and they are essential to quantify the models ability to 152 
reproduce observations.  153 
 154 
The EURODELTA project was initiated by the Task Force on Measurement and 155 
Modelling and the Joint Research Centre of the European Commission to provide a 156 
benchmark for the EMEP model in order to assess its relevance for policy support 157 
(Colette et al.2017a). These multi-model exercises contribute to further improving 158 
modelling techniques and understanding the associated uncertainties in the models 159 
performance. Previous exercises have evaluated the performance of chemistry transport 160 
models for future European air quality (e.g. van Lon et al. 2007, Thunis et al. 2008). 161 
Recently, Bessagnet et al. (2016) presented an intercomparison and evaluation of 162 
chemistry transport model performance with a joint analysis of some meteorological 163 
fields. They highlighted the limitations of models to simulate meteorological variables, 164 
such as wind speed and planetary boundary layer height. Particularly, in the case of 165 
ozone, they showed the importance of boundary conditions on model calculations. 166 
Within this framework, the ongoing Eurodelta-Trends (EDT) exercise (Colette et al. 167 
2017a) builds upon this tradition and focuses on the context of air quality trends 168 
modelling. This exercise has been designed to better understand the evolution of air 169 
pollution and its drivers over the last two decades (1990-2010) by the use of state-of-170 
the-art air quality models. The EDT project will allow the evaluation of the skill of 171 
regional air quality models and quantification of the role of the different key driving 172 
factors of surface ozone, such as emissions changes, long-range transport and 173 
meteorological variability. One of the main goals of the EDT project is to assess the 174 
efficiency of mitigation strategies for improving air quality (more details can be found 175 
in Colette et al. 2017a).  176 
 177 
Quantification and isolation of the effects of meteorology on ozone is a challenge, due 178 
to the complex interrelation between ozone, meteorology, emissions and chemistry 179 
(Solberg et al. 2015). There is a large number of representative studies in the literature 180 
that have established the relationship between surface ozone concentrations and 181 
meteorological variables using statistical modelling techniques (e.g. Bloomfield et al. 182 
1996, Chaloukau et al 2003, Barrero et al. 2005, Ordóñez et al., 2005, Camalier et al., 183 
2007, Seo et al., 2014, Porter et al. 2015, Otero et al., 2016). Most of these works 184 
examined the impact of meteorology on ozone pollution levels through observational 185 
datasets. Only a few studies, to our knowledge, examined the statistical relationship 186 
between surface ozone and meteorological parameters from models. 187 
 188 
Davis et al. (2011) developed regression models to analyse the observed and modelled 189 
relationship between meteorology and surface ozone across the Eastern of U.S. They 190 
found that the Community Multiscale Air Quality (CMAQ) model did not capture the 191 
effect of temperature and relative humidity on daily maximum 8-h ozone and it 192 
generally underestimated the observed sensitivities to both meteorological variables, 193 
especially in the northeast. Rasmussen et al. (2012) examined the ozone-temperature 194 
relationship in a coupled chemistry-climate model and they found that the model 195 
underestimated the effect of temperature on ozone over the Mid-Atlantic. Lemaire et al. 196 
(2016) proposed a combined statistical and deterministic approach to assess the air 197 
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quality response to projected climate change. Based on a data set from a deterministic 198 
climate and chemistry models, they identified the two major drivers of surface ozone 199 
over eight European regions, selected from a set of potential predictors that reached the 200 
highest correlations with ozone. Afterwards they built statistical models consisting of 201 
generalized linear models, which could be used to predict air quality.  202 
 203 
Given that meteorology plays an essential role for surface ozone concentrations, it 204 
might be a considerable source of uncertainties in model outputs. The present study, 205 
thus, aims to provide a simple method to examine the influence of meteorological 206 
variability on modelled surface ozone concentrations over Europe. Specifically, our 207 
analysis focuses on the ozone season (April to September) over the years 2000-2010. 208 
The choice of this period is mainly motivated by the availability of the observational 209 
dataset from Schnell et al. (2014, 2015) (see section 2.1). Within the EDT framework, a 210 
recent report has presented the main findings on the long-term evolution of air quality 211 
(Colette et al. 2017b). Part of these results was obtained from the analysis of the 1990s 212 
(1990-2000) and 2000s (2000-2010) separately. Consistently, we decided to focus on 213 
the second decade, for which the interpolated dataset of observed on maximum daily 8-214 
hourly mean ozone (MDA8 O3) used in this study was available. Similarly to Otero et 215 
al. (2016), we apply a multiple linear regression approach to examine the 216 
meteorological influence MDA8 O3. Statistical models are developed separately for 217 
observational datasets and air quality models, with the primary focus on examining the 218 
relationship between MDA8 O3 and potential meteorological drivers in the air quality 219 
models and comparing these with the corresponding relationships determined from 220 
observed data. Therefore, this study offers a method of model evaluation capable of 221 
understanding the discrepancies between air quality models and observations in terms of 222 
representing the relationship to meteorological input variability. 223 
 224 
The present paper is structured as follows. Section 2 describes the observational data as 225 
well as the air quality models studied here. The methodology and the design of the 226 
statistical models are introduced in section 3. Section 4 discusses the results and the 227 
summary and conclusions are discussed in section 5. 228 
 229 
2. Data 230 

 231 
2.1. Observations 232 
 233 

This study uses gridded MDA8 O3 concentrations created with an objective-mapping 234 
algorithm developed by Schnell et al. (2014). They applied a new interpolation 235 
technique over hourly observations of stations from the European Monitoring and 236 
Evaluation Programme (EMEP) and the European Environment Agency’s air quality 237 
database (AirBase) to calculate surface ozone averaged over 1º by 1º grid cells. 238 
Recently, Otero et al. (2016) used this dataset for examining the influence of synoptic 239 
and local meteorological conditions over Europe. This interpolated product offers a 240 
possibility to establish a direct comparison between observations and CTMs. However, 241 
it must be acknowledged that for some areas with a low number of stations (i.e. the 242 
southeastern or northeastern European regions) the values interpolated into the 1x1 243 
degree grid cells may not be representative of such large scales.  A complete description 244 
of this process can be found in Schnell et al. (2014, 2015). The gridded dataset covers a 245 
total of 15-years (1998-2012), but here we use a common period of 11-years for both 246 
observations and CTMs (2000-2010).  247 
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 248 
This study investigates the observed influence of meteorological variables on MDA8 249 
O3, based on the ERA-Interim reanalysis product provided by the European Centre for 250 
Medium-Range Weather Forecasts (ECMWF) at 1ºx1º resolution (Dee et al. 2011). 251 
Meteorological reanalyses products are essentially model simulations constrained by 252 
observations and they have been widely validated against independent observations. 253 
Daily mean values are calculated as the mean of the four available time steps at 00, 06, 254 
12, and 18UTC for 10m wind speed components (u and v) and 2m relative humidity. 255 
Maximum temperature is approximated by the daily maximum of those time steps, 256 
while daily mean surface solar radiation is obtained from the 3-hourly values provided 257 
for the forecast fields.  258 
 259 

2.2. Chemistry Transport Models (CTMs) 260 
 261 

A set of state-of-the-art air quality models participating in the EDT exercise is used 262 
here: LOTOS-EUROS (Schaap et al., 2008, Manders et al. 2017), EMEP/MSC-W 263 
(Simpson et al., 2012), CHIMERE (Mailer et al., 2017), MATCH (Robertson et al., 264 
1999), MINNI (Mircea et al., 2016) and WRF-Chem (Grell et al. 2005, Mar et al. 2016). 265 
The domain of the CTMs extends from 17ºW to 39.8ºE and from 32ºN to 70ºN and it 266 
follows a regular latitude-longitude projection of 0.25x0.4 respectively. The main 267 
features of the CTM setup are largely constrained by the EDT experimental protocol 268 
(e.g. meteorology, boundary conditions, emissions, resolution, see Colette et al. 2017a 269 
for further details). For instance, the boundary conditions were defined from 270 
climatology of observational data for most of the experiments of the EDT exercise 271 
(included the data used here). However, the representation of physical and chemical 272 
processes and the vertical distribution differ in the CTMs, as well as the vertical 273 
distribution of model layers (including altitude of the top layer and derivation of surface 274 
concentration at 3m height in the case of EMEP, LOTOS-EUROS and MATCH). 275 
Moreover, there were no specific constrains imposed on biogenic emissions (including 276 
soil NO emissions), which are represented by most of the models using an online 277 
module (Colette et al. 2017a).  Since we aim here to compare the modelled relationship 278 
between meteorology and surface ozone, prescribing common features in the CTMs is 279 
particularly an advantage to identify potential sources of discrepancies.  280 
 281 
Only one of the participating CTMs included online coupled chemistry/meteorology 282 
(WRF-Chem), while all the rest of the models used are offline. The CTMs were forced 283 
by regional climate model simulations using boundary conditions from the ERA-Interim 284 
global reanalysis (Dee et al., 2011). Most of these offline CTMs used the same 285 
meteorological input data, with a few exceptions. Three of them (EMEP, CHIMERE 286 
and MINNI) used input meteorology from the Weather Research and Forecast Model 287 
(WRF) (Skamarock et al. 2008). LOTOS-EUROS and MATCH used the input 288 
meteorology produced by RACMO2 (van Meijgaard, 2012) and HIRLAM (Dahlgren et 289 
al. 2016), respectively. Unlike the rest of the regional climate models, RACMO2 used 290 
in the EDT exercise excluded nudging towards ERA-Interim, which might have some 291 
impact in the meteorological fields generated by RACMO2. As mentioned, WRF-Chem 292 
couples the meteorology simulations online with chemistry. The meteorology used to 293 
drive WRF-Chem (initial and lateral boundary conditions and the application of limited 294 
four-dimensional data assimilation; see Colette et al GMD 2017a) is the same WRF 295 
meteorology from Skamarock et al. (2008) used as input for the EMEP, CHIMERE, and 296 
MINNI runs. Table 1 summarises the CTMs and the corresponding sources of 297 
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meteorological input data used here. It is important to highlight that though WRF-Chem 298 
is not strictly a CTM, in order to avoid confusion with the statistical models developed 299 
in this study, we refer to all the air quality models considered (offline and online 300 
models) as CTMs hereafter. As with the observations, CTMs and their meteorological 301 
counterpart were interpolated to a common grid with 1º x 1º horizontal resolution. The 302 
use of a coarser resolution could have an impact in some regions with a complex 303 
orography where airflow is usually controlled by mesoscale phenomena (e.g. see-breeze 304 
and mountain-valley winds) or in regions characterized by high emissions densities 305 
(Schaap et al., 2015, Gan et al. 2016 ). In such cases the use of a finer grid could be 306 
beneficial to capture the variability of local processes.  307 
 308 
A set of meteorological parameters was selected from the meteorological input data for 309 
the regression analyses. Similarly to the procedure with ERA-Interim, daily means are 310 
obtained from the available time steps every 3 hours in the case of WRF and RACMO2, 311 
and every 6 hours for HIRLAM for the following variables: 10m wind speed 312 
components, 2m relative humidity and surface solar radiation. Maximum temperature is 313 
also approximated by the daily maximum of those time steps.  314 
 315 
3. Multiple Linear regression model 316 

 317 
Summertime usually brings favourable conditions for high tropospheric ozone 318 
concentrations, such as air stagnation due to high-pressure systems, warmer 319 
temperatures, higher UV radiation, and lower cloud cover (Dawson et al. 2007). As 320 
stated above, the impact of meteorology on ozone concentration has been addressed 321 
through a wide variety of statistical methods in the literature. This study attempts to 322 
better understand how CTMs represent the influence of meteorology on ozone. To this 323 
aim, we use a multiple linear regression approach that can provide useful information of 324 
sensitivities in the distribution of ozone concentration as a whole (Porter et al., 2015).  325 
 326 
A total of five meteorological predictors (Table 2) are selected based on the existing 327 
literature that has shown their strong influence on ozone pollution. (e.g. Bloomfield et 328 
al. 1996, Barrero et al. 2005, Camalier et al. 2007, Dawson et al. 2007, Rasmussen et al. 329 
2012, Davis et al. 2011, Doherty et al., 2013, Otero et al. 2016). Moreover, it has been 330 
shown that the occurrence of air pollution episodes might increase when the pollution 331 
levels of the previous day are higher than normal (Ziomas et al. 1995). Then, apart from 332 
the meteorological predictors, we add the effect of the lag of ozone (MDA8 from the 333 
previous day) in order to examine the role of ozone persistence. Additionally, we 334 
include harmonic functions that capture the effect of seasonality as in Rust et al. al 335 
(2009) and Otero et al. (2016), which is referred as “day” in the MLRs (see Table 2).  336 
 337 
For this study, we divide the European domain into 10 regions: England (EN), Inflow 338 
(IN), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), North 339 
Italy (NI), Mediterranean (MD), Balkans (BA) and Eastern Europe (EA). These regions 340 
are based on those defined in the recent ETC/ACM Technical Paper (Colette et al. 341 
2017b). For our study, we further subdivide the original Mediterranean region (MD) 342 
into a region covering the Balkans (BA), due to the strong influence of the ozone 343 
persistence on MDA8 O3 over this particular region as noted previously in Otero et al. 344 
(2016). Figure 1 shows the spatial coverage of each region and Table 3 lists their 345 
coordinates. As shown Otero et al. (2016), the relative importance of predictors in the 346 
MLRs shows distinct seasonal patterns. Then, multiple linear regression models (MLR, 347 
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hereafter) are developed for each region for two seasons: springtime (April-May-June, 348 
AMJ) and summertime (July-August-September, JAS). These seasons differ from the 349 
meteorological definition, but cover the period when surface ozone typically reaches its 350 
highest concentrations (i.e. April-September). Since the observations did not cover 351 
exactly the whole European domain as CTMs, we applied an observational-mask to use 352 
the same number of grid-cells for CTMs and observations. Data used to estimate 353 
parameters of the MLR were spatially averaged over each region.  Thus, we compare 354 
MLRs developed separately for CTMs and observations at each region and season. The 355 
observational dataset contains the gridded MDA8O3 and the meteorology input from 356 
ERA-Interim, while the dataset for the CTMs contains the MDA8O3 from each one of 357 
them along with the corresponding meteorological input (e.g. LOTOS and RACMO2, 358 
CHIMERE and WRF) (see table 1). 359 
 360 
A MLR is built to describe the relationship between MDA8 O3 (predictand) and a set of 361 
covariates (or predictors) describing seasonality, ozone persistence and the influence of 362 
meteorological fields (table 2).  A data series yt, t= 1,..N (e.g. observations or CTM 363 
simulations) for a given region and season is conceived as a Gaussian random variable 364 
Yt with varying mean t and homogeneous variance 

2
. The mean t is described as a 365 

linear function of the covariates, i.e. 366 
 367 
𝑌𝑡 ~ 𝒩(𝜇𝑡, 𝜎2), 368 

𝜇𝑡 =  𝛽0 + 𝛽𝑠𝑖𝑛𝑠𝑖𝑛 (
2𝜋

365.25
𝑑𝑡) + 𝛽𝑐𝑜𝑠𝑐𝑜𝑠 (

2𝜋

365.25
𝑑𝑡)  + 𝛽𝑙𝑎𝑔𝑦𝑡−1 + ∑ 𝛽𝑘

𝐾
𝐾=1 𝑥𝑡,𝑘   (1) 369 

 370 
with t indexing daily values and 𝑑𝑡 referring to the day in the year associated with the 371 
index t. 𝛽0 is a constant offset, 𝛽𝑠𝑖𝑛 and 𝛽𝑐𝑜𝑠 are the first order coefficient of a Fourier 372 
series (e.g. Rust et al. 2009, 2013, Fischer et al. 2017), 𝛽𝑙𝑎𝑔 describes the persistence 373 

with respect to the previous day concentration  𝑦𝑡−1 ; if t is the first day in the late 374 
summer season (JAS, July 1

st
), 𝑦𝑡−1 is the concentration of June 30

th
. Further regression 375 

coefficients 𝛽𝑘 describe the linear relation to potential meteorological drivers (see table 376 
2). For covariates standardized to unit variance, the regression coefficients (𝛽)  are 377 
standardised coefficients giving the change in the predictand with the covariate in units 378 
of covariate standard deviation. 379 
 380 
Following the same strategy as used in Otero et al. (2016), the MLRs are developed 381 
through several common steps: 1) starting with the full set of potentially useful 382 
components in the predictor, a stepwise backward regression using the Akaike 383 
Information Criterion (AIC) as a selection criterion removes successively those 384 
components in the predictor, which contribute least to the model performance; and 2) a 385 
multi-collinearity index known as variance inflation factor (VIF, Maindonald and Braun 386 
2006) is used to detect multi-collinearity problems in the predictor (i.e. high correlations 387 
between two or more components in the predictor). Components with a VIF above 10 388 
are left out of the predictor (Kutner et al 2004).  389 
 390 
The statistical performance of each MLR (built separately from observations and 391 
CTMs) is assessed through the adjusted coefficient (R

2
) and the root mean square error 392 

(RMSE). The R
2
 estimates the fraction of total variability described by the MLR and the 393 

RMSE gives the average deviation between model and observation obtained in the 394 
MLR. We also examine the relative importance of the individual components in the 395 
predictor. According to the method proposed by Lindeman et al (1980), the relative 396 
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importance of each predictor is estimated by its contribution to the R
2
 coefficient 397 

(Grömping 2007). We assess the sensitivities of ozone to the predictors through the 398 
standardised coefficients obtained from the regression. These coefficients indicate the 399 
changes in the ozone response to the changes in the predictors, in terms of standard 400 
deviation. Thus, for every standard deviation unit increase (decrease) of a specific 401 
predictor, the predictand (MDA8 O3) will increase (decrease) the amount indicated by 402 
its coefficient in standard deviation units,. The use of standardised coefficients allows 403 
us to establish a direct comparison in the influence of individual predictors. The effect 404 
of seasonality introduced by the harmonic functions (namely, “day”, table 2) is kept in 405 
the MLRs (Eq. 1) for its usefulness in improving the power of the regression analysis, 406 
however further explanation about the effect of the predictors focuses on the rest of the 407 
variables.  408 
 409 
4. Results and discussion 410 
 411 

4.1. CTM performance by region 412 
 413 
We compare the seasonal cycle of observations and CTMs through the time series of 414 
daily averaged values of MDAO8 O3 from observations and CTMs for the whole period 415 
(i.e. April-September, 2000-2010) spatially averaged over each region. Furthermore, 416 
correlation coefficients between both CTMs and observations at each region and season 417 
are used to quantify the CTM performance.  418 
 419 

4.1.1. Seasonal cycle of MDA8 O3 420 
 421 

We examine the ozone seasonal cycle represented by both the observational and 422 
modelled dataset. Figure 2 depicts daily averages during 2000-2010 of MDA8 O3 at 423 
each region for the CTMs and observations. In general, all CTMs are biased high 424 
compared with observations. CTM results are visually closer to observations in the 425 
northwestern regions (i.e. IN, EN and FR), while the spread becomes larger over the 426 
southern and southeastern regions (i.e. BA, NI, MD). The IN, EN and SC regions show 427 
the highest observed concentrations in the starting months (AMJ), which is not 428 
generally well captured by most of the CTMs, and they show a more flat timeline (e.g. 429 
LOTOS, MATCH, CHIMERE or WRF-Chem). For example, in the SC region, some of 430 
the CTMs underestimate the ozone concentrations in AMJ (i.e. WRF-Chem, CHIMERE 431 
and MINNI). The rest of the regions show the highest observed concentrations in JAS, 432 
which is generally overestimated by the CTMs. Models show discrepancies when 433 
compared to each other and to observations, and in some regions we find substantial 434 
differences. Larger discrepancies are found in the southern regions, such as IP, MD and 435 
BA, where the models show a considerable spread. There, the CTMs are not able to 436 
capture the variability of MDA8 O3 and they exhibit a different behaviour when 437 
compared to each other. For instance, the EMEP model shows a peak of ozone levels in 438 
April, while CHIMERE and MINNI show a peak in July. Overall LOTOS shows a 439 
relatively constant positive bias in all regions, more evident in the MD and NI regions. 440 
WRF-Chem tends to underestimate the ozone concentrations at the start of the seasonal 441 
period in some regions (e.g. SC, ME, EN, or EA). 442 
 443 
CTM assessments have been presented in early EURODELTA exercises, although with 444 
a different set up for different purposes, which makes it difficult to establish a direct 445 
comparison on the performance of the models. For instance, Colette et al. (2017b) 446 
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reported systematic differences among some models (i.e. CHIMERE, EMEP and 447 
LOTOS) when examining the long-term mean ozone concentration during the whole 448 
period of 1990-2010. Bessagnet et al. (2016) showed that most of the models in their 449 
study, (e.g. CHIMERE, LOTOS, or MINNI among others) overestimated the ozone 450 
concentrations in the selected study period. Specifically, they found a larger spread 451 
during nighttime than daytime, which was suggested to be related to the vertical mixing, 452 
given that most of the models shared the same meteorology but different vertical 453 
resolution and boundary conditions. 454 
 455 

4.1.2. Correlation coefficients between modelled and observed time series 456 

 457 
The correlation coefficients between the observed and modelled values of MDA8 O3 at 458 
each region and in each season are shown in Fig. 3. Overall, MDA8 O3 from the CTMs 459 
is better correlated with observations in JAS than in AMJ in the regions ME, NI, EA 460 
and EN. As expected from inspection of the average time series (Fig. 2), the lowest 461 
correlations between models and observations are found in BA, especially in AMJ for 462 
all models. In particular, EMEP is negatively correlated with observations over this 463 
region. As mentioned above, the larger discrepancies between CTMs and observations 464 
found over BA might be attributed to a low density of observation sites from which the 465 
interpolated dataset is derived, resulting in a lower quality or higher uncertainties of 466 
such product (Schnell et al. 2014). The highest correlations in AMJ are obtained at the 467 
following regions: ME; FR; NI; and EN for most of the models, except for EMEP for 468 
which the highest correlation with observations was found in IN and SC. The WRF-469 
Chem model also shows a different behaviour in terms of the correlation coefficient 470 
with higher values in NI, MD and IP, and very low and negative correlations (-0.02) in 471 
SC. In general, the models that are most closely correlated with observations are 472 
MATCH, MINNI and CHIMERE, while LOTOS and WRF-Chem show the lowest 473 
correlations. In the case of LOTOS, it could be partially due to the use of a different set-474 
up of the RACMO2 model, without nudging towards ERA-Interim (section 2.2). These 475 
correlations reflect the patterns represented by the seasonal cycle described above.  476 
 477 

4.2. MLR performance 478 
 479 

Figures 4 and 5 depict the statistical performance of each MLR in terms of R
2
 and 480 

RMSE (respectively) at the different regions for both seasons, AMJ and JAS. The R
2
 481 

values indicate that all MLRs models (based on both observations and CTMs) are able 482 
to explain more than 60% of the MDA8 O3 variance in all regions. Overall, the MLRs 483 
show a stronger fit in JAS than in AMJ in most of the regions, with the exception of SC 484 
and IN that, in general show lower values of R

2
 in JAS than in AMJ (Fig. 4). The MLRs 485 

appear to perform better in certain regions such as NI, ME, FR or EA, while the poorest 486 
statistical performance is found in IN and EN. The results obtained from the CTM-487 
based MLRs show a similar performance to the observation-based MLRs in most of the 488 
regions. The lowest RMSE values for most of the MLR are found in SC ranging 489 
between 1 and 3 ppb, while EN shows the largest RMSE values, especially for the MLR 490 
built from WRF-Chem (Fig. 5). The MLRs from MATCH and CHIMERE show the 491 
lowest RMSE values (1-3ppb) suggesting the best statistical fit from a predictive point 492 
of view. 493 
 494 
Both R

2
 and RMSE metrics indicate that the statistical performance of MLRs for 495 

observations and CTMs show distinct variations between seasons and regions. Overall, 496 
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better performances are found in JAS and in some regions (i.e. ME, NI, or FR) where 497 
MLRs are able to describe more than the 80% of the variance in CTMs and 498 
observations. This could be attributed to the major role of meteorology in summer 499 
influencing local photochemistry processes of ozone production, while in spring long 500 
range transport plays a stronger role (Monks, 2000, Tarasova et al. 2007). As it includes 501 
the bias, the RMSE reveals more differences among the MLRs when compared to each 502 
other (e.g. larger errors for WRF-Chem or LOTOS when compared to MATCH or 503 
CHIMERE). However, it is interesting that in general all MLRs show a similar 504 
tendency when evaluating the statistical performance, which indicate that observations-505 
based and CTMs-based MLRs present a similar statistical performance for modelling 506 
MDA8 O3. The ability of the CTMs to reproduce the influence of meteorological 507 
drivers on MDA8 O3 is discussed in more detail below. 508 
 509 

4.3. Effects of drivers of ozone concentrations  510 
 511 

The analysis of the influence of the predictors in the MLRs reveals distinctive regional 512 
patterns in both observation-based and CTM-based MLRs. In agreement with Otero et 513 
al. (2016), here we also find that the regions geographically located towards the interior 514 
(including central, western and eastern regions) appear to be more sensitive to the 515 
meteorological predictors, especially in JAS. On the contrary, a minor meteorological 516 
contribution is found in the regions over the northernmost and southernmost edges, 517 
implying that non-local processes play a stronger role. Considering such similarities, in 518 
the following, the regions: EN, FR, ME, NI and EA are referred as the internal regions, 519 
while the rest of the regions: IN, SC, IP, MD and BA, are referred as the external 520 
regions (see Fig. 1).  521 
  522 
4.3.1 Relative importance 523 
 524 
Figure 6 depicts the relative importance of the predictors for the observation-based and 525 
CTM-based MLRs in the internal regions (Fig. 1). Here, a larger meteorological 526 
influence (i.e., the predictors other than LO3 and day) can be seen in JAS compared to 527 
AMJ in all of these regions.  In general, the dominant meteorological drivers from the 528 
observation-based MLRs in these internal regions are RH and Tx. The contribution of 529 
RH is evident in AMJ (e.g. ME, or EA), while Tx is clearly dominant in JAS. SSRD is 530 
also a key driver of MDA8 O3 and generally, the wind factors (W10m and Wdir) 531 
appear to have a minor contribution.  532 
 533 
Despite the CTM-based MLRs being able to capture the meteorological predictors, we 534 
observe discrepancies among the internal regions when compared to the observation-535 
based MLR. The inter-model differences in terms of the relative importance of 536 
predictors are greater in AMJ than in JAS. For instance, the contribution of the LO3 is 537 
overestimated by most of CTMs, specifically WRF-Chem that shows a larger sensitivity 538 
to LO3 in both seasons over all of these regions. Similarly, EMEP also shows a larger 539 
contribution of LO3 than the rest of the CTMs, particularly in AMJ. Substantial 540 
differences are found in the influence of RH when comparing the observation-based and 541 
the CTMs-based models. The CTMs do not capture the relative importance of the RH 542 
well, especially in AMJ. In general, the CTMs driven by WRF meteorology show a 543 
slightly larger contribution of RH in most of the cases, although we notice that there are 544 
also some differences among the models that share the same meteorology. CTMs do 545 
capture the relative importance of Tx in all regions, but overall they overestimate it, as 546 
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they also show for SSRD. Here, we find discrepancies when comparing the contribution 547 
of predictors in the statistical models from CTMs driven by the same meteorology (e.g. 548 
EMEP and WRF-Chem when compared to CHIMERE and MINNI). The largest 549 
differences among the CTMs are found for WRF-Chem, which tends to underestimate 550 
the contribution of the meteorological drivers in most of the regions. Interestingly, as 551 
mentions in Section 2, this is the only online coupled model participating in EDT. 552 
 553 
Figure 7 presents the relative importance of individual predictors in the MLRs 554 
developed at the external regions (Fig. 1) for both seasons. The observation-based 555 
MLRs show that the main driving factor is LO3 in AMJ, while the effect of 556 
meteorological drivers becomes stronger in JAS. RH presents a larger contribution in 557 
some regions (e.g. IN, IP or SC) in AMJ and Tx in JAS (e.g. IN, IP, SC and BA). The 558 
contribution of wind components, Wdir and W10m, is mainly reflected in both seasons 559 
in the western regions (i.e. IN and IP) and in MD, respectively.  560 
 561 
Overall, all CTMs show this tendency, although there are substantial differences when 562 
comparing the individual drivers’ contribution in the observation-based and CTM-based 563 
MLRs, particularly in AMJ (Fig. 7). CTMs do not capture the contribution of LO3 564 
reflected by the observation-based MLRs. As in the previous analysis (section 4.1) the 565 
largest discrepancies are found in BA, where observation-based MLR shows that most 566 
of the variability of ozone would be explained by LO3. On the contrary the CTM-based 567 
MLRs underestimate the contribution of LO3 and overestimate the meteorological 568 
effect in terms of larger contribution of Tx, SSRD and RH (e.g. LOTOS, CHIMERE 569 
and MINNI). The contribution of RH is underestimated by the CTMs in most of the 570 
regions, (except in BA). On the contrary, the relative importance of SSRD is 571 
overestimated in some regions (e.g. IP, IN or MD) and Tx (IN, SC), in particular for the 572 
CTMs driven by WRF. Overall, CTMs show the observed contribution of W10m and 573 
Wdir in both seasons, although with some inconsistences among the regions and CTMs. 574 
 575 
Our results indicate that the relative importance of meteorological factors is stronger in 576 
the internal regions (Fig.6) than in the external regions (Fig.7), which could be partially 577 
attributed to a larger variability of most of the meteorological fields in internal regions 578 
(Fig. S1). The external regions are also more likely to be influenced by the lateral 579 
boundary conditions applied by each CTM. In addition, in some external regions (e.g. 580 
IP or MD), as mentioned in section 2, the use of a coarser grid in some regions might be 581 
insufficient to capture mesoscale processes, such as land-sea breezes, which also control 582 
MDA8 O3 concentrations (Millán et al. 2002). Moreover, we observe that meteorology 583 
becomes more important in summer, when local photochemistry processes are 584 
dominant. In general, CTMs show this tendency, but limitations to reproduce the effect 585 
of some meteorological drivers are found. Specifically, while CTMs tend to 586 
overestimate the contribution of Tx, and SSRD, they underestimate the relative 587 
importance of RH, which is also reflected in the correlations coefficients between 588 
predictand the predictors (Figs. S2, S3).  589 
 590 
4.3.2 Sensitivity of ozone to the drivers 591 
 592 
We assess the sensitivities of MDA8 O3 to the drivers through their standardised 593 
coefficients obtained in the MLR (Section 3). These coefficients provide further 594 
information about the changes of MDA8 O3 due to effect of each driver. Figures 8 and 595 
9 depict the values of the main driving factors obtained in the MLR for the internal and 596 
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the external regions (respectively): LO3, Tx and RH. Similarly to those patterns 597 
described by the relative importance of drivers, we observe that the ozone response to 598 
LO3 is stronger in AMJ than in JAS: the corresponding standardised coefficients are 599 
always positive and generally higher in AMJ. The observed sensitivities to LO3 are 600 
smaller in the internal regions (Fig. 8), being particularly dominant in the external 601 
regions (Fig. 9). Overall, most of the CTMs reflect a similar tendency. However, there 602 
are evident differences among observations and CTMs when comparing the values of 603 
the standardised coefficients, specifically in some regions such as BA or MD. When 604 
comparing the ozone responses of the CTMs to LO3, we observe that in most of the 605 
regions MATCH and MINNI show values closest to observations, while WRF-Chem 606 
shows a large sensitivity to LO3.  607 
 608 
Correlations between MDA8 O3 and Tx are strong, especially in the internal regions in 609 
JAS (Fig. S2).  Overall, we show that the CTMs appear to capture the observed effect of 610 
Tx better in JAS than in AMJ in most of the regions. The highest sensitivities to Tx are 611 
found in some internal regions such as ME, NI, FR and EN, which is also shown in the 612 
CTMs. However, we see that most of the CTMs tend to overestimate the effect of Tx. 613 
Moreover, distinct sensitivities to Tx are shown by models that share the same 614 
meteorology (i.e. CHIMERE, EMEP, MINNI and WRF-Chem). In particular, the 615 
MINNI and CHIMERE models show higher Tx sensitivities when compared to the rest 616 
of the CTMs. While MINNI model presents the highest sensitivities to Tx in spring, 617 
specifically in EN and FR, EMEP shows smaller values and it underestimates the 618 
correlations between Tx and MDA8 O3 (Figs. S2, S3).  619 
 620 
The slope of the ozone-temperature relationship (mO3-T) has been used in several studies 621 
to assess the ozone climate penalty (eg. Bloomer et al., 2009, Steiner et al., 2010, 622 
Rasmussen et al., 2012, Brown-Steiner et al. 2015) in the context of future air quality. 623 
Thus, we additionally analyse the relationship ozone-temperature in order to provide 624 
insight into the ability of CTMs to reproduce the observed mO3-T. Similarly as in 625 
previous work (Brown-Steiner et al. 2015), the slopes are obtained from a simple linear 626 
regression using only Tx (without the influence from other predictors) and they are used 627 
to quantify such relationship in both seasons, AMJ and JAS. 628 
 629 
Figures 10 and 11 illustrate the mO3-T for the internal and the external regions 630 
respectively. The observed mO3-T is larger in JAS than in AMJ. In AMJ, it ranges 631 
between -0.45 and 1.15 ppbK

-1
 with the largest values found in ME, NI and MD. In 632 

JAS, the observed climate penalty is of the order of 1-2.7 ppbK
-1

 with the largest values 633 
in EN, FR, ME, NI, and MD. CTMs show a better agreement with observations in JAS 634 
than in AMJ. CTMs tend to overestimate the climate penalty in AMJ in most of the 635 
regions, with some exceptions, such as EMEP and MATCH that systematically 636 
underestimate the slopes. Also, CTMs are generally better in simulating the observed 637 
mO3-T in the internal regions compared to the mO3-T in the external regions, where in 638 
general CTMs appear to overestimate the climate penalty in both seasons. Using this 639 
metric, we identify some regions particularly sensitive to temperature, with larger 640 
values of mO3-T (e.g. EN, ME, FR, NI or MD). Through a multi-model assessment, 641 
Colette et al. (2015) showed a significant summertime climate penalty in southern, 642 
western and central European regions (e.g. EA, IP, FR, ME or MD) in the majority of 643 
the future climate scenarios used. Our study shows that most of the CTMs confirm the 644 
observed climate penalty in JAS in such regions in the near present, although we found 645 
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that most of the CTMs overestimate the climate penalty in AMJ, especially in the 646 
external regions. 647 
 648 
We see a stronger effect of RH in AMJ than in JAS in the observations compared with 649 
the CTMs (Figs. 8 and 9), with the greatest impact in the internal regions (e.g. EA, ME, 650 
NI, FR and EN). The CTMs show this tendency slightly in some regions (e.g. ME, FR 651 
or EN), but differences become evident when compared to the observed values and 652 
overall they underestimate the effect of RH. As mentioned, CTMs underestimate the 653 
strength of the relationship between ozone-RH (Figs. S2, S3). This general lack of 654 
sensitivity to RH could also partially explain the tendency for all CTMs to show a high 655 
bias in simulated ozone compared with observations (Fig. 2).  Among the possible 656 
reasons for this inconsistency, we hypothesize that it can be related to the fact that 657 
ozone removal processes can be associated to higher relative humidity levels during 658 
thunderstorm activity on hot moist days, which might not be well captured by CTMs. 659 
Furthermore, the documented impacts of ozone dry deposition suggest that it may also 660 
play a role in explaining the problems that CTMs show to reproduce the observed 661 
relationship ozone-relative humidity.  662 
 663 
High SSRD levels favour photochemical ozone formation and it is usually positively 664 
correlated to ozone. In this case, CTMs also present some limitations to capture this 665 
effect and they overestimated the sensitivities of ozone to SSRD (Figs. S4, S5). For 666 
example, the observations show lower and surprisingly negative effect of SSRD. 667 
Although the correlations between SSRD and ozone are positive (see Fig. S2, S3), the 668 
presence of other predictors in the regression may reverse the sign of the estimated 669 
coefficient. The CTMs show a stronger sensitivity of ozone to SSRD and they 670 
overestimate its influence on surface ozone. Similarly, the sensitivities to Wdir and 671 
W10m are also overestimated by the CTMs, especially in AMJ (Figs. S4, S5).  672 
 673 
Our analysis suggests that CTMs present more limitations to reproduce the influence of 674 
meteorological drivers to MDA8 O3 concentrations in the external regions than in the 675 
internal regions, particularly in AMJ. Moreover, we find the largest discrepancies in 676 
BA, where models show the poorest seasonal performance and correlation coefficients 677 
(Figs. 2 and 3, respectively), probably due a low quality of the observational dataset.  678 
 679 
Furthermore, LO3 is the main driver over most of the external regions and explains a 680 
large proportion to the total variability of MDA8 O3, while meteorological factors play 681 
a smaller influence. Lemaire et al. (2016) found a very low performance (based on R

2
) 682 

over the British Isles, Scandinavia and the Mediterranean using a different statistical 683 
approach that only included two meteorological drivers. They attributed this low skill to 684 
the large influence over those regions of long-range transport of air pollution (Lemaire 685 
et al. 2016). Our results confirm the small influence of the meteorological drivers over 686 
those regions and the strong influence of the ozone persistence. Moreover, in the case of 687 
the external regions of northern Europe, it could also be explained due to the dominance 688 
of transport processes such as the stratospheric-tropospheric exchange or long-range 689 
transport from the European continent, rather than local meteorology, particularly in 690 
AMJ (Monks, 2000, Tang et al. 2009, Andersson et al. 2009). 691 
 692 
Previous work pointed out that local sources of NOx and biogenic VOC (ozone 693 
precursors) are important factors of summertime ozone pollution in the Mediterranean 694 
basin (Richards et al. 2013). Moreover, some studies suggested that the local vertical 695 
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recirculation and accumulation of pollutants play an important role in ozone pollution 696 
episodes in this region: during the nighttime the air masses are held offshore by land-sea 697 
breeze, creating reservoirs of pollutants that are brought the following day (Millán et al. 698 
20002, Jiménez et al. 2006, Querol et al. 2017). All of these factors (e.g. local emissions 699 
as well as local and large-scale processes) control the ozone variability, which might 700 
explain the smaller influence of local meteorological factors shown in this study over 701 
the Mediterranean basin when compared to meteorological influence in the internal 702 
regions. Thus, we may hypothesize that the strong impact of LO3 observed in the 703 
external regions over southern Europe (i.e. IP, MD, BA) could be partially due to the 704 
role of vertical accumulation and recirculation of air masses along the Mediterranean 705 
coasts as a result of the mesoscale phenomena, which is enhanced by the complex 706 
terrains that surround the Basin. Other important factor for the strong impact of LO3 707 
observed is the slow dry deposition of ozone on water that would favour the ozone 708 
persistence in southern Europe. 709 
 710 
Overall we conclude that CTMs capture the effect of meteorological drivers better in the 711 
internal regions (EN, FR, ME, NI and EA), where the influence of local meteorological 712 
conditions is stronger. The major effect of meteorological parameters found in the 713 
internal European regions might be also attributed to the fact that overall the variability 714 
of meteorological conditions is larger in those regions (Fig. S1). We also find 715 
differences among the CTMs driven by the same meteorology. As mentioned in the 716 
introduction, Bessagnet el al. (2016) suggested that the spread in the model results 717 
could partly explained by the differences in the vertical diffusion coefficient and the 718 
planetary boundary layer, differently diagnosed in each of the CTMs. Our results also 719 
indicate that even though models share the same meteorology (considering the 720 
prescribed requirements defined by the EDT exercise) they show discrepancies when 721 
compared to each other, which could be attributed other sources of uncertainties (such 722 
as physical and chemical internal process in the CTMs). The NMVOC and NOx 723 
emissions from the biosphere are critical in the ozone formation.  Since biogenic 724 
emissions were not specifically prescribed, which have a strong dependence on 725 
temperature and solar radiation, discrepancies in the CTMs performances, (e.g. different 726 
sensitivities to Tx) might be expected. Furthermore, we notice that the CTMs do not 727 
reproduce consistently the regional ozone-temperature relationship, which is a key 728 
factor when assessing the impacts of climate change on future air quality.  729 
 730 
5. Summary and conclusions 731 
 732 
The present study evaluates the capability of a set of Chemical Transport Models 733 
(CTMs) to represent the regional relationship between daily maximum 8-hour average 734 
ozone (MDA8 O3) and meteorology over Europe. Our results show systematic 735 
differences between the CTMs in reproducing the seasonal cycle when compared to 736 
observations. In general, they tend to overestimate the MDA8 O3 in most of the 737 
regions. In the western and northern regions (i.e. Inflow, England and Scandinavia), 738 
some models did not capture the high ozone levels in spring (e.g. CHIMERE, MINNI 739 
and WRF-Chem), while in other southern regions (e.g. Iberian Peninsula, 740 
Mediterranean and Balkans) they overestimated the ozone levels in summer (e.g. 741 
LOTOS, CHIMERE). Of the CTMs, MATCH and MINNI were the most successful in 742 
capturing the observed seasonal cycle of ozone in most regions. All CTMs revealed 743 
limitations to reproduce the variability of ozone over the Balkans region, with a general 744 
overestimation of the ozone concentrations, considerably larger during the warmer 745 
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months (July, August). As reflected in the results, a limitation of the interpolated 746 
observational product used here is that in some regions (e.g. southern Europe) it has a 747 
lower quality due to a reduced number of stations (section 2.1).  748 
 749 
The MLRs performed similarly for most of the CTMs and observations, describing 750 
more than 60 % of the total variance of MDA8 O3. Overall, the MLRs perform better in 751 
JAS than in AMJ, and the highest percentages of described variance were found in Mid 752 
Europe and North Italy. This could be attributed to local photochemical processes being 753 
more important in JAS, and is consistent with a stronger influence of long-range 754 
transport in AMJ.  755 
 756 
The effects of predictors revealed spatial and seasonal patterns, in terms of their relative 757 
importance in the MLRs. Particularly, we noticed a larger local meteorological 758 
influence in the regions located towards the interior, here termed as the internal regions 759 
(i.e. England, France, Mid-Europe, North Italy and East-Europe). A minor local 760 
meteorological contribution was found in the rest of the regions, referred as the external 761 
regions (i.e. Inflow, Iberian Peninsula, Scandinavia, Mediterranean and Balkans). The 762 
CTMs are in better agreement with the observations in the internal regions than in the 763 
external regions, where they were not as successful in reproducing the effects of the 764 
ozone drivers. Overall, the different behaviour in the MLRs developed in the external 765 
regions could be attributed to (i) a larger influence of dynamical processes rather than 766 
local meteorological processes (e.g. long range transport in the northern regions) (ii) a 767 
stronger impact of the boundary conditions (iii) the use of a coarser grid that might be 768 
insufficient to capture mesoscale processes that also influence MDA8 O3 (e.g. sea-land 769 
breezes in the southern regions).  770 
 771 
We found substantial differences in the sensitivities of MDA8 O3 to the different 772 
meteorological factors among the CTMs, even when they used the same meteorology. 773 
As Bessagnet et al. (2016) point out, the differences amongst CTMs could be partly 774 
attributed to some other diagnosed model variables (e.g. vertical diffusion coefficient 775 
and boundary layer height, as well as vertical model resolution). To assess the effect of 776 
such potential sources of uncertainties, further investigations would be required. 777 
Moreover, variations in the sensitivity of ozone to meteorological parameters could 778 
depend on differences in the chemical and photolysis mechanisms and the 779 
implementation of various physics schemes, all of which differ between the CTMs (see 780 
Colette et al. 2017a). Specifically, the discrepancies found in the sensitivities of MDA8 781 
O3 to maximum temperature might be also attributed to biogenic emissions not 782 
prescribed in the models. This was particularly reflected in the analysis of the slopes 783 
ozone-temperature (mO3-T) to assess the climate penalty, which differed between CTMs 784 
and regions when compared to the observations in both seasons. Most of the CTMs 785 
confirm the observed climate penalty in JAS, but with larger discrepancies in the 786 
external regions than in the internal regions. Furthermore, CTMs tend to overestimate 787 
the climate penalty in AMJ  (particularly in the external regions). 788 
 789 
Our results have shown that CTMs tend to overestimate the influence of maximum 790 
temperature and surface solar radiation in most of the regions, both strongly associated 791 
with ozone production. None of the CTMs captured the strength of the observed 792 
relationship between ozone and relative humidity appropriately, underestimating the 793 
effect of relative humidity, a key factor in the ozone removal processes. We speculate 794 
that ozone dry deposition schemes used by the CTMs in this study may not adequately 795 
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represent the relationship between humidity and stomatal conductance, thus 796 
underestimating the ozone sink due to stomatal uptake. Further sensitivity analyses 797 
would be recommended for testing the impact of the current dry deposition schemes in 798 
the CTMs. 799 
  800 
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 802 
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List of Tables: 846 
 847 
CTM  Meteorology Coupling 
LOTOS-EUROS RACMO2 Off-line 
MATCH HIRLAM Off-line 
EMEP WRF Off-line 

CHIMERE Off-line 

MINNI Off-line 

WRF-Chem On-line 

 848 
Table 1. List of the chemistry-transport models used in the study, their corresponding meteorological 849 
driver and chemistry/meteorology coupling. 850 
 851 
 852 

 853 
 854 
 855 
 856 
 857 
 858 
 859 
 860 
 861 
 862 

 863 
Table 2. List of the predictors used in the multiple linear regression analysis: meteorological parameters, 864 
lag of O3 (24h, previous day) and the seasonal cycle components.  865 
 866 

 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
 878 
 879 
 880 
 881 

Table 3. List of the regions with the short name and the coordinates.  882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
 890 
 891 

Predictor Definition 

LO3 Lag of O3 (24 h)  

Tx Maximum temperature 

RH Relative humidity 

SSRD Surface solar radiation 

Wdir Wind direction 

W10m Wind speed 

day sin(2πdt/365.25), 

cos(2πdt/365.25) 

Region Acronym Coordinates (longitude, latitude) 

England EN 5W-2E, 50N-55N 

Inflow IN 10W-5W, 50N-60N, and 5W-2E, 55N-60N 

Iberian Peninsula IP 10W-3E, 36N-44N 

France FR 5W-5E, 44N-50N 

Mid-Europe ME 2E-16E, 48N-55N  

Scandinavia SC 5E-16E, 55N-70N 

North Italy NI 5E-16E, 44N-48N 

Balkans BA 18E-28E, 38N-44N 

Mediterranean MD 3E-18E, 36N-44N 

Eastern Europe EA 16E-30E, 44N-55N 
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List of Figures: 892 
 893 
 894 
  895 

 896 
 897 
Figure 1. Map of the regions considered in the study. Regions indicated with a black star are referred to 898 
the internal regions in the text. The rest of regions are referred to the external regions of the European 899 
domain.  900 
 901 

 902 
   903 
Figure 2. Time series of daily averages of MDA8 O3 during the ozone season (April-September) for the 904 
period of study (2000-2010) at each subregion. 905 
 906 
 907 
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  908 
Figure 3. Correlation coefficients between observed and modelled MDA8 O3 for spring (AMJ) and 909 
summer (JAS) for the period of study (2000-2010) at each region (rows) and models (columns, ordered 910 
by highest correlation values). 911 
 912 
   913 

 914 
   915 
Figure 4. Coefficients of determination (R

2
) for each CTM-based (ordered as in Fig.3) and observation-916 

based MLR in spring (AMJ) and summer (JAS).  917 
 918 
 919 
 920 
 921 
 922 
 923 
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 924 

 925 
 926 
Figure 5. Root mean square errors (RMSE) for each CTM-based (ordered as in Fig.3) and observation-927 
based MLR at each region, in spring (AMJ) and summer (JAS). 928 
 929 
 930 
 931 

   932 
Figure 6. Proportion of each predictor to the total explained variance for each CTM-based (ordered as in 933 
Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) for the internal regions: England 934 
(EN), France (FR), Mid-Europe (ME), North Italy (NI) and East-Europe (EA). 935 
 936 
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   937 
Figure 7. Proportion of each predictor to the total explained variance for each CTM-based (ordered as in 938 
Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) for the external regions: Inflow (IN), 939 
Iberian Peninsula (IP), Scandinavia (SC), Mediterranean (ME) and Balkans (BA). 940 
 941 
 942 

   943 
Figure 8. Standardised coefficients values of the main key-driving factors (LO3, Tx and RH) for each 944 
CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) and for the 945 
internal regions: England (EN), France (FR), Mid-Europe (ME), North Italy (NI) and East-Europe (EA). 946 
 947 
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 948 

  949 
Figure 9. Standardised coefficients values of the main key-driving factors (LO3, Tx and RH) for each 950 
CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) and for the 951 
external regions: Inflow (IN), Iberian Peninsula (IP), Scandinavia (SC), Mediterranean (ME) and Balkans 952 
(BA). 953 

 954 
 955 
 Figure 10. Slopes (mO3-T; ppbK

-1
) obtained from a simple linear regression to estimate the relationship 956 

ozone-temperature for each CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) 957 
and JAS (bottom) and for the internal regions: England (EN), France (FR), Mid-EU (ME), North Italy 958 
(NI), East-EU (EA). 959 
 960 
 961 
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 962 
Figure 11. Slopes (mO3-T; ppbK

-1
) obtained from a simple linear regression to estimate the relationship 963 

ozone-temperature for each CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) 964 
and JAS (bottom) and for the external regions: Inflow (IN), Iberian Peninsula (IP), Scandinavia (SC), 965 
Mediterranean (ME) and Balkans (BA). 966 
  967 
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